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ABSTRACT

Supervised deep learning performance is heavily tied to the
availability of high-quality labels for training. Neural net-
works can gradually overfit corrupted labels if directly trained
on noisy datasets, leading to severe performance degradation
at test time. In this paper, we propose a novel deep learning
framework, namely Co-Seg, to collaboratively train segmen-
tation networks on datasets which include low-quality noisy
labels. Our approach first trains two networks simultaneously
to sift through all samples and obtain a subset with reliable
labels. Then, an efficient yet easily-implemented label cor-
rection strategy is applied to enrich the reliable subset. Fi-
nally, using the updated dataset, we retrain the segmenta-
tion network to finalize its parameters. Experiments in two
noisy labels scenarios demonstrate that our proposed model
can achieve results comparable to those obtained from fully
supervised learning trained on the noise-free labels. In addi-
tion, our framework can be easily implemented in any seg-
mentation algorithm to increase its robustness to noisy labels.

Index Terms— Deep Learning, Weakly Supervised
Learning, Image Segmentation

1. INTRODUCTION

Recent years have witnessed an upsurge of interests in
biomedical segmentation. Based on fully convolutional net-
works, U-Net [1] has been emerging as a classic model which
concatenates multi-scale features from the downsampling
layers and the upsampling layers. By stacking two U-Net
architectures on top of each other, DoubleU-Net [2] is an
improved version of U-Net aiming to achieve higher perfor-
mance on specific tasks. CE-Net [3] modifies U-Net structure
by adopting pretrained ResNet blocks in the feature encod-
ing step to capture high-level spatial information. However,
these fully supervised learning algorithms are vulnerable to
label noise and their performance may be hugely degraded
by noisy labels. Therefore, under noisy labels conditions, it
is important to identify and selectively learn from a clean and

reliable subset of samples which mainly include data with
clean labels, rather than learning from the whole sample set.

How to improve deep learning performance under noisy
labels conditions has caught great attention [4, 5, 6, 7, 8, 9].
One direction is to estimate the mathematical model of a noise
distribution [6, 7]. [7] proposes two procedures for loss cor-
rection based on noise transition matrix estimation. Another
direction is to directly train on clean samples [8, 9]. Co-
teaching [8] trains two networks simultaneously to pick clean
samples for each one. However, most current approaches fo-
cus on classification tasks, which cannot be applied to the
segmentation where labels are spatially arranged in a dense
manner. Finally, sample-based reweighting methods [9, 10]
just ignore or assign small weights on noisy samples, which
can lead to severe overfitting, especially for small datasets.

In this paper, we propose a novel deep learning frame-
work for image segmentation, namely Co-Segmentation (Co-
Seg), to handle noisy labels. Our framework integrates the
idea of selective training and label correction. In particular,
we propose a robust training network to collaboratively learn
and select samples with reliable labels. Then a label correc-
tion scheme is proposed to enrich the reliable dataset and we
retrain a new network on the updated dataset. Experimental
results using Co-Seg on noisy labels show performance com-
parable to supervised learning on noise-free labels. In sum-
mary, this paper has the following contributions:
(1) We develop an easily-implemented yet effective frame-
work for image segmentation tasks with noisy labels. It can
be easily applied to any deep learning segmentation model to
increase learning ability under noisy labels conditions.
(2) We demonstrate that, in multiple noise settings, our model
achieves comparable results to supervised training on noise-
free labels.

2. METHODOLOGY

Our proposed framework consists of 3 modules: (1) robust
training module against noisy labels, (2) label correction
module, and (3) retraining module, as shown in Fig. 1. The
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Fig. 1. Algorithm flow of Co-Seg framework.

robust learning module trains two segmentation networks
simultaneously and selects clean samples for their peer net-
works. Then, the label correction module employs a voting
strategy to correct unreliable labels from the noisy samples
measured by corruption scores. Lastly, a single segmentation
network is trained on the updated dataset to finalize network
parameters for future segmentation tasks.

2.1. Robust training against noisy labels

Robust training against noisy labels is very challenging due to
memorization effects of deep learning models. Directly train-
ing on noisy labels, the networks can gradually overfit noisy
samples. Inspired by [8], our robust training module collab-
oratively trains two networks (peer network 1 & 2) for clean
sample selection. Each network picks up a small proportion
of high-quality samples in every mini-batch based on ranked
corruption scores. Then, such high-quality samples will be
fed to its peer network for back propagation. Given a sample,
the corruption score Sc is:

Sc = −
∑
x∈Ω

L∑
l=1

gl(x) log(pl(x)) (1)

where L is the number of classes, pl(x) is the estimated prob-
ability of class l at pixel position x ∈ Ω with Ω the image
domain and gl(x) is the label of the ground truth. The cor-
ruption score measures the reliability of the sample. Samples
with smaller corruption scores are more likely to be clean.
The proportion of samples selected from the corruption score
ranking is controlled by α, which is related to the noise level
of the labels.

The loss function of each segmentation network is a com-
bination of a cross entropy loss LCE , a Dice loss LDice, and a
L2-regularization term on the parameters Wf of the network:

Ltotal = LCE + λ1LDice + λ2||Wf ||22 (2)

LDice = 1− 1

L

L∑
l=1

2
∑
x∈Ω

(pl(x)gl(x))∑
x∈Ω

(pl(x))2 +
∑
x∈Ω

(gl(x))2
(3)

where λ1, λ2 are tuned parameters. Here, the Dice loss LDice

is used to capture spatial and structural coherence in the seg-
mentation tasks.

2.2. Label correction

We propose to correct noisy labels in biomedical segmenta-
tion, rather than ignore or downweight them for two reasons.
First, maintaining data size is essential. Training on small-
size samples may easily lead to severe overfitting. This is par-
ticularly important in biomedical applications where reliable
labels at expert level are limited. Second, some noisy sam-
ples contain pixels with accurate spatial annotations, which
could benefit segmentation. This differs from an image-level
classification task where clean and noisy labels are disjoint.

In the label correction module, labels in the training set
are corrected based on the voting results from the two col-
laboratively trained networks obtained from the robust train-
ing module. First, we differentiate the noisy samples and the
clean samples according to their corruption scores ranking.
For each pixel in the noisy samples, we correct their labels if
the prediction results from the two networks are the same but
different from the input labels. Our updated dataset consists
of clean samples with original labels and noisy samples with
corrected labels. This process enriches the clean dataset with
noise-corrected samples.

2.3. Retraining

Based on the updated dataset, we retrain a final segmentation
network, which shares the same network structure as one of
the peer networks. Similarly, the retraining uses loss function
defined in Eq. 2. Then, this network will be used for final
predictions.

3. EXPERIMENTS

We evaluated segmentation performance in two noisy set-
tings, including both real-world labeling noise from an inex-
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Fig. 2. Benchmark U-Net training behavior with 0.5 noise
level and Co-Seg corruption scores. (a) Accuracy curves over
training epochs under Type I noise. (b) Corruption scores un-
der Type II noise: values and probability density functions
from the whole training set.

perienced annotator and synthetic noise.
Datatsets. Our evaluation is based on chest X-rays from

the Japanese Society of Radiological Technology (JSRT)
dataset [11]. This dataset consists of 247 posterior-anterior
(PA) chest radiographs. Ground-truth lung masks were ob-
tained from the annotation of Radiographs (SCR) database
[12] at expert level. Following previous work in [13, 14], we
resize all images into 256 × 256 pixels and split the training
and testing sets by ID number: the training set contains 124
images with odd ID number and the testing set contains 123
images with even ID.

Label corruption scenarios. We conducted experiments
using two scenarios of label corruption. (1) Synthetic bound-
ary (Type I) noise. Manual segmentation variability usually
occurs around tissue boundaries due to spatial uncertainty of
contrast transition between different tissue types. Following
[9], we generated boundary noise by randomly eroding or di-
lating tissue boundaries by ni pixels with 1 ≤ ni ≤ 8 in each
direction; (2) Inexperienced annotation (Type II) noise. Hu-
man annotators tend to have a systematic bias toward over and
under segmented tissue boundaries. To mimic this real-world
noise scenario, an inexperienced annotator who was blind to
the algorithm and ground truth, manually labeled the data and
generated biased labels.

Experimental setup. As a demonstration of the frame-
work, we choose the classic U-Net [1] as the network ar-
chitecture to evaluate noise robustness performance and we
adopt the same U-Net architecture and hyper-parameters for
all segmentation networks in the robust training module (peer
network 1 and 2 in Fig. 1) and retraining module (final
network). We also use the performance of a single U-Net
segmentation network with the same architecture trained on
noise-free labels as a baseline for comparison. All networks
are randomly initialized for fair comparison. The segmenta-
tion performance is evaluated by both accuracy (ACC) and
Dice coefficient (DIC) in comparison with ground truth. The
corrupted training sets are generated by replacing a propor-
tion of clean labels with noisy labels. The noise level (NoL)
is defined as the proportion of noisy labels in the training
set. Following previous research [8, 9], we assume NoL is a
known parameter and set α = 1−NoL.

Table 1. Evaluation metrics on lung segmentation with dif-
ferent label noise types (Type I and II explained in the text)
and noise levels expressed as the proportion of noisy samples.

Network Noise Metrics Noise level for Type I and II
0.1 0.2 0.3 0.4 0.5

Co-Seg
Type I ACC 0.978 0.975 0.978 0.978 0.980

DIC 0.975 0.973 0.975 0.974 0.976

Type II ACC 0.981 0.980 0.980 0.980 0.978
DIC 0.974 0.974 0.975 0.975 0.973

U-Net Noise Free ACC 0.981
DIC 0.976

Results. Table 1 reports evaluation metrics for lung seg-
mentation on the JSRT dataset with different label noise
types and noise levels, together with the baseline experiment
on noise-free labels using U-Net. The results obtained by
our model are comparable with the baseline noise-free U-Net
training. Differences are all below 0.6% in both DIC and
ACC. Small variations among noise levels are likely caused
by model stochasticity. Those results demonstrate that our
Co-Seg model can provide robust results under noise levels up
to 0.5 with performance similar to learning using noise-free
labels.

We further visualize experimental results to show the ef-
fectiveness of the Co-Seg model. Fig. 2(a) compares the
training accuracy curves (background and lung segmentation)
from the benchmark U-Net trained using the updated labels,
noise-free labels and the noisy labels over training epochs.
The accuracy curve for the noisy labels (blue) decreases af-
ter 30 epochs indicating that the network is gradually over-
fitting the noisy samples. Meanwhile, the accuracy curve for
the updated labels (red) is flat and smooth, showing consis-
tency of training quality similar to the curve for the noise-
free labels (green). Fig. 2(b) shows the corruption scores and
their probability density functions for the entire training set
with 0.5 noise level under Type II noise. The blue/red curves
are the probability density functions fitted on the clean/noisy
samples. The two probability density functions have (almost)
disjoint supports, indicating that corruption scores effectively
separate noisy and clean samples.

Figure 3 shows the effect of our label correction module in
the two noise scenarios. In Fig. 3 (top row), the Type I noisy
labels are well corrected. In Fig. 3 (bottom row), the Type
II noisy labels are all well corrected at boundary locations
marked by a single arrow. In addition, Co-Seg also fills in the
large region of missing pixels marked by a double arrow.

4. CONCLUSIONS

In this paper, we develop a novel collaborative training frame-
work, Co-Seg, to improve segmentation robustness against
noisy labels. The robust training module uses two networks to
learn representative features from samples detected as being
reliable in a dataset with noisy labels. The label correction
module employs a voting mechanism to trim the reliable set
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Fig. 3. Label correction results with 0.5 noise level for Type I
(top row) and Type II (bottom row) noise types. Ground-truth
segmentation lung boundaries are shown in white while the
noisy/updated labels are marked in pink.

prior to final retraining. Experimental results on both syn-
thetic and real-world noisy labels scenarios show that our Co-
Seg model is robust to label corruption and achieves compa-
rable results with those trained with noise-free labels. Impor-
tantly, our training scheme is generic and can be easily ap-
plied to other deep learning models to increase labeling noise
immunity. Future work will focus on extensive validation on
more medical segmentation tasks, evaluation of potential bias
of the label correction module toward selecting high-quality
images and on the usefulness of applying more than two net-
works in the collaborative training.
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